Chem. Ber. 117, 783 - 796 (1984)

Komplexe mit alkylsubstituierten Phosphinomethanen und -methaniden, VII¹⁾

Mono- und Diphosphinomethanide als Chelatliganden in Eisen-, Cobalt- und Nickelkomplexen

Hans Heinz Karsch

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 26. April 1983

Pentakoordinierte Komplexe L₂L'CoCH₂PMe₂ (1 a, b, L = L' = PMe₃; L = PMe₃, L' = CO) und [L₃NiCH₂PMe₂]Y (2 a, b, Y = Cl, PF₆) sowie hexakoordinierte Komplexe L₃(X)FeCH₂PMe₂ (3, 4, X = H, Me) und L₂Me₂CoCH₂PMe₂ (5) wurden durch Reaktion von LiCH₂PMe₂ mit den entsprechenden Phosphanmetallhalogenid-Komplexen dargestellt. Alle Komplexe enthalten einen M - C - P-Dreiring. Demgegenüber führt die analoge Reaktion mit LiCH(PMe₂)₂ zu den Komplexen L₃(H)Fe(Me₂PCHPMe₂) (7) und L₂Me₂Co(Me₂PCHPMe₂) (9), die einen Vierring M - P - C - P enthalten. Hierzu im Gegensatz steht der Cobalt(I)-Komplex L₃CoCH(PMe₂)PMe₂ (6b), der wie 1 a, b einen dreigliedrigen Ring Co - C - P mit einer "freien" exocyclischen Me₂P-Gruppe aufweist. Die spontane Umlagerung von 7 in L₃Fe(Me₂PCH₂PMe₂) (8) durch reduktive Eliminierung verläuft wahrscheinlich ebenfalls über einen solchen Dreiring, und auch 9 läßt sich bei Substitution von PMe₃ durch PMe₂Ph (= L') in einen Dreiringkomplex L'₂Me₂CoCH(PMe₂)PMe₂ (10) überführen.

Complexes with Alkyl Substituted Phosphinomethanes and -methanides, VII¹⁾

Mono- and Diphosphinomethanides as Chelate Ligands in Iron-, Cobalt-, and Nickel Complexes Pentacoordinate complexes $L_2L'COCH_2PMe_2$ (1a, b, $L = L' = PMe_3$; $L = PMe_3$, L' = CO) and $[L_3NiCH_2PMe_2]Y$ (2a, b, Y = Cl, PF₆) as well as hexacoordinate complexes $L_3(X)FeCH_2PMe_2$ (3, 4, X = H, Me) and $L_2Me_2CoCH_2PMe_2$ (5) were prepared from LiCH₂PMe₂ and the appropriate phosphanemetal halide complexes. These complexes all contain a three-membered M - C - Pring. LiCH(PMe_2)₂, however, forms $L_3(H)Fe(Me_2PCHPMe_2)$ (7) and $L_2Me_2Co(Me_2PCHPMe_2)$ (9) in the analogous reaction, both containing a four-membered ring M - P - C - P. In contrast to this, the corresponding Co¹ complex $L_3CoCH(PMe_2)PMe_2$ (6b) also contains a three-membered Co - C - P ring with a "free" exocyclic Me₂P group. The spontaneous conversion of 7 to $L_3Fe(Me_2PCH_2PMe_2)$ (8) by reductive elimination probably also proceeds via a three-membered ring and also 9, by substitution of PMe₃ with PMe_2Ph (= L'), is converted into a complex with a three-membered ring, $L'_2Me_2CoCH(PMe_2)PMe_2$ (10).

A. Monophosphinomethanide

1974 berichteten wir über einen Komplex L₃CoCH₂PMe₂ (1a), der erstmals das Strukturelement eines (-C - P)-Dreirings I enthielt²).

© Verlag Chemie GmbH, D-6940 Weinheim, 1984 0009 – 2940/84/0202 – 0783 \$ 02.50/0 Gleichzeitig und ebenso zufällig wurden σ -Carboranyl-Platinkomplexe gefunden, deren Röntgenstrukturanalyse auf eine Stabilisierung gemäß I schließen läßt³⁾. In den letzten Jahren wurde eine Reihe vergleichbarer Komplexe erhalten, deren spontane Bildung ebenfalls auf eine erhöhte Stabilität hinweist⁴⁻¹⁰, jedoch wurden auch Komplexe mit verbrückendem (II)^{6,11-15)} und "offenem" (III)¹⁵⁻¹⁸⁾ Phosphinomethanid-Fragment bekannt. Eine gezielte Darstellung dieses Komplextyps gelang uns erstmals 1977 nach Gl. (1)¹⁹⁾.

Auf ähnlichem Weg¹⁵⁻¹⁷⁾, aber auch nach anderen Methoden²⁰⁻²²⁾, konnten weitere derartige Komplexe gezielt erhalten werden, und auch eine detaillierte MO-Beschreibung liegt nun vor¹⁸⁾.

B. Diphosphinomethanide

Bisher ist nur das phenylsubstituierte Diphosphinomethanid $Ph_2PCHPPh_2^{\bigcirc}$ als Komplexligand beschrieben worden, wobei in mehrkernigen Komplexen meist eine verbrückende Koordinationsweise, z. T. auch unter Einbeziehung des Carbanions, realisiert ist ^{14,23-27)}. In einem Fall ist dabei eines der Metallatome sogar in eine Dreiringeinheit einbezogen (**IV**)²⁸⁾.

In einkernigen Komplexen ist dagegen bisher nur ein Vierringsystem der Art V gefunden worden $^{25,26,29-31}$, während VI bisher nicht beobachtet wurde.

Wir berichten hier über die Darstellung von Komplexen mit $\bigcirc - CH_2PMe_2$ - und $\bigcirc - PMe_2CHPMe_2$ -Einheiten, wobei sowohl I und V als auch VI realisiert sind. Über einige der Ergebnisse wurde in Kurzform bereits berichtet ^{32,33}.

Darstellung der Monophosphinomethanid-Komplexe

Das Gl. (1) zugrundeliegende Reaktionsprinzip läßt sich auch auf eine Reihe weiterer komplexer Metallhalogenide ausweiten [Gl. (2) - (3)].

Ganz analog zu (1) lassen sich im isoelektronischen Nickel(II)-System die Komplexe 2a, b darstellen, womit ein solches Dreiringsystem zum ersten Mal in einem kationischen Komplextyp verwirklicht ist.

Prinzipiell scheint das Nickelsystem geeignet, eine weitere Phosphinomethanid-Einheit einzuführen. Nach Gl. (6) wird aber nur $(Me_3P)_4Ni$ als leichtlösliches Reaktionsprodukt isoliert.

Das wahrscheinliche weitere Produkt einer reduktiven Eliminierung des hypothetischen Zwischenprodukts $L_2Ni(CH_2PMe_2)_2$, nämlich $Me_2PCH_2CH_2PMe_2$, konnte nicht identifiziert werden³⁴⁾. Ebenso wie **1a** wurde auch $L_3(H)FeCH_2PMe_2$ (**3**) zunächst auf einem "zufälligen" Weg (7) erhalten. Die Existenz des intramolekularen Gleichgewichts (7b) *bei Phosphanzusatz* konnte mit dem System [P(CD₃)₃]₄Fe (**3D**)/P(CH₃)₃ sichergestellt werden⁴⁾.

$$L_{3}C_{0}C_{1} + L_{1}CH_{2}PMe_{2} \longrightarrow L_{3}C_{0}CH_{2}PMe_{2} \qquad 1a \qquad (1)$$

$$+ c_{0}$$

$$L_{3}(C_{0})C_{0}C_{1} + L_{1}CH_{2}PMe_{2} \longrightarrow L_{3}(C_{0})C_{0}CH_{2}PMe_{2} \qquad 1b \qquad (2)$$

$$L_{3}(CO)CoC1 + LiCH_{2}PMe_{2} \longrightarrow L_{2}(CO)C_{0}CH_{2}PMe_{2} \quad 1b \qquad (2)$$

$$\downarrow + co$$

$$L_2(CO)_2CoCl + LiCH_2PMe_2 \longrightarrow lc$$
 (3)
(nicht identifiziert)

$$L_{2}NiCl_{2} + LiCH_{2}PMe_{2} \xrightarrow{L} [L_{3}NiCH_{2}PMe_{2}]Cl \quad 2a \qquad (4)$$

$$[L_3NiCH_2PMe_2]PF_6$$
 2b (5)

$$L_2 NiCl_2 + 2 LiCH_2 PMe_2 \xrightarrow{L} L_4 Ni + \dots$$
(6)
$$L_4 PMe_2$$

Die Reaktion nach Gl. (8)³⁷⁾ und nachfolgende Reaktion nach Gl. (9) führt zurück zu 3. Diese Reaktionsfolge (8)/(9) ist natürlich zur präparativen Darstellung von 3 nicht sinnvoll, erlaubt aber durch den Einsatz des deuterierten 3D und Reaktion mit DCl/LiCH₂PMe₂ auf einfache Weise, das Gleichgewicht (7b) eindeutig zu belegen [Gl. (10)], ohne daß zusätzlicher Phosphanzusatz³⁸⁾ das Ergebnis beeinflussen könnte [Gl. (10)].

Das ausweislich seiner v(Fe - D)-Valenzschwingungsbande zunächst bei tiefer Temperatur gebildete **3D/Hb** läßt nach einiger Zeit bei + 30°C (1/2 h, Nujol-Lösung) auch eine v(Fe - H)-Valenzschwingungsbande mit zunehmender Intensität erkennen, womit über das Vorliegen eines Gleichgewichts (7b) auch die Existenz der koordinativ ungesättigten Zwischenstufe **3a** zweifelsfrei nachgewiesen ist.

Eine zu Gleichung (9) analoge Reaktion (11) führt zu 4, das keine Bereitschaft zu einer reduktiven C – C-Verknüpfung etwa nach (12a) erkennen läßt ³⁹⁾.

Auch für ein Gleichgewicht (12b) gibt es keinen Anhaltspunkt. 4, das ähnliche Eigenschaften wie 3 aufweist, aber thermisch stabiler ist, wird auch nach Reaktion (13) in mäßiger Ausbeute erhalten.

$$L_{4}(CH_{3})FeBr + LiCH_{2}PMe_{2} \longrightarrow L_{B} \xrightarrow{CH_{3}} CH_{2} \xrightarrow{(12a)} 4 \qquad (11)$$

$$L_{4}(CH_{3})FeBr + LiCH_{2}PMe_{2} \xrightarrow{(12a)} L_{D} \xrightarrow{L_{D}} P_{A}Me_{2} \xrightarrow{(12a)} + L \xrightarrow{(12b)} L_{4}Fe + PMe_{2}Et \qquad L_{4}Fe=CH_{2}$$

$$L_{2}FeCl_{2} + 2 L \xrightarrow{M_{g}/THF} "L_{4}Fe" \xrightarrow{Mel/Mg/THF} 4 + \dots \qquad (13)$$

$$L \xrightarrow{CH_{3}} CH_{2} \xrightarrow{CH_{3}} CH_{2}$$

$$L \xrightarrow{CH_3}_{L \to CH_3} CH_3 + LiCH_2PMe_2 \xrightarrow{-L} L_{C \to CH_3}^{L \to CH_3} CH_2 5$$

$$L \xrightarrow{L_B}_{L \to CH_3} CH_2 = 5$$

$$L_C \xrightarrow{L_B}_{L \to CH_3} P_AMe_2$$

$$L = PMe_3$$
(14)

Wie $L_4(CH_3)$ FeBr⁴⁰⁾ reagiert der zum d⁶-System gehörende Komplex $L_3(CH_3)_2$ CoBr⁴¹⁾ zum Dreiringkomplex 5 [Gl. (14)].

Die im Gegensatz zum Ausgangskomplex jetzt *trans*-ständigen Methylgruppen sind bei kleinen Chelatringen typisch¹⁾ (vgl. auch unten bei 9, 10).

Die Dreiringkomplexe 1-5 sind rote bis braune (1a-c) bzw. gelborange (2-5) Feststoffe, die in Lösung und im Festzustand alle luftempfindlich sind. Mit Ausnahme der Kationkomplexe 2a, b (Aceton, CH₂Cl₂) sind sie in unpolaren Lösungsmitteln sehr gut löslich. Schmelzpunkte sind nicht präzise bzw. überhaupt nicht anzugeben, da Zersetzungserscheinungen beim Erhitzen vorherrschen. Immerhin sind die kovalenten Verbindungen alle (wenn auch unter starker Zersetzung) sublimierbar (80-100 °C/ 10^{-2} Torr).

Reaktionen der Monophosphinomethanid-Komplexe mit CO

Am besten untersucht sind die Reaktionen von 3, über die schon berichtet wurde^{4,5,37,40,42,43)}. Insbesondere interessiert die mögliche Ringspannung des M-C-P-Dreirings, die zur leichten Einschiebung von z. B. CO in die M-C-Bindung führen könnte. Diese Reaktion mit CO ist diesbezüglich bei 3 aber durch das Wirksamwerden

des Gleichgewichts (7b) ungeeignet⁴⁾. Immerhin gelingt aber unter geeigneten Bedingungen eine Einschiebung von CO_2^{42} . Da zu den Komplexen **1b**, **2a**, **b**, **4** und **5** "offene" Analoge **A** – **D** existieren, läßt sich z. T. ein direkter Vergleich bezüglich der Reaktionen mit CO ziehen. Wie **A** reagiert **1a** nach (15) spontan mit CO.

Im Gegensatz zu A findet aber nur Substitution, unter Bildung von 1b, (zunächst) aber keine Einschiebung wie bei A [Gl. (16)]^{44,45)} statt. Verlängerte Reaktionszeiten ergeben ein Produkt 1c, das auch nach Gl. (3) erhalten wurde, sich aber nicht eindeutig identifizieren ließ. Immerhin läßt eine IR-Absorptionsbande bei 1710 cm⁻¹ jetzt eine CO-Einschiebung in die Co – C-Bindung vermuten.

Über eine Reaktion von **B** mit CO wurde bisher nicht berichtet⁴⁷, **C** und **D** reagieren gemäß Gl. $(17)^{40}$ und $(18)^{41}$.

$$L_{3}CoCH_{2}PMe_{2} + CO \xrightarrow{+ 30^{\circ}C/Pentan} L_{2}(CO)CoCH_{2}PMe_{2} lb (15)$$

$$la \xrightarrow{+ 30^{\circ}C} CO/latm + CO/latm$$

$$L_4CoCH_3 + CO \xrightarrow{-78^{\circ}C/Pentan} L_2(CO)_2CoCOCH_3 + L \quad (16)^{44}$$

$$L_{4}Fe(CH_{3})_{2} + CO \xrightarrow{+10^{\circ}C/Pentan} L_{3}(CO)Fe(CH_{3})_{2} + L \qquad (17)^{40}$$

$$L_{3}Co(CH_{3})_{3} + CO \xrightarrow[6]{-78^{\circ}C/Pentan}{5 \text{ min/l atm}} L_{2}(CO)_{2}CoCOCH_{3} + L \qquad (18)^{41}$$

$$L = PMe_{3}$$

Weder bei der Reaktion von **2b** noch bei der von **5** mit CO konnten wir ein CO-haltiges Produkt nachweisen. In beiden Fällen werden **2b** bzw. **5** zurückgewonnen⁵⁰. Nach diesen Ergebnissen scheint die M-C-Bindung im Dreiring bezüglich einer CO-Insertion, die zu einem (spannungsärmeren?) Vierring führen könnte, weniger aktiviert als eine "normale" M-C- σ -Bindung. Dies steht im Einklang mit einer Stabilisierung gemäß I.

Darstellung der Diphosphinomethanid-Komplexe

Die besondere Stabilität des Dreirings könnte dafür verantwortlich sein, daß bei der zu Gl. (1) analogen Reaktion des d⁸-Komplexes L₃CoCl mit LiCH(PMe₂)₂ nicht **6a** mit der "üblichen" Bindungsweise **V**, sondern der braune Feststoff **6b** (**VI**) entsteht [Gl. (19)].

Dieses Verhalten kann nicht allein auf sterische Gründe zurückgeführt werden: ist die Nucleophilie des Carbanions reduziert, wie z. B. beim vergleichbaren Neutralliganden $Me_3P = C(PMe_2)_2$, so wird mit { $(Me_3P)_3Co[(Me_2P)_2CPMe_3]$ }PF₆ ein CoPCP-Vierringkomplex isolierbar⁵¹}. Demgegenüber ist die zu Gl. (9) korrespondierende Reaktion (20) im d⁶-Komplexsystem wieder "normal" bezüglich der Koordination des Diphosphinomethanid-Liganden.

Toluol-Lösungen des orangegelben Komplexes 7 färben sich bei + 25 °C rasch dunkelrot, wobei durch (irreversible) reduktive Eliminierung 8 entsteht [Gl. (21)]³²⁾. (Dieser Komplex ist auch nach Gl. (22) zugänglich, hierüber wurde bereits berichtet ⁵²⁾.) Interessant ist ein Vergleich von 7/8 mit 3a, b, wobei im Falle 7/8 der Eisen(0)-Komplex 8 klar bevorzugt ist – trotz der erhöhten Acidität von (Me₂P)₂CH₂ gegenüber PMe₃. Dies ist sicher auf die koordinativ ungesättigte Natur von 3a im Vergleich zu 8 zurückzuführen, Voraussetzung hierbei ist der geringe Raumbedarf von Me₂PCH₂PMe₂. ((Me₃P)₅Fe ist nicht isolierbar⁴⁻⁶⁾.) Hierin liegt möglicherweise auch die Ursache dafür, daß mit dem Isomerenpaar 7/8 u. W. erstmals beide Komponenten einer intramolekularen C – H-Additions-/-Eliminierungsreaktion isolierbar (und charakterisierbar) sind.

Die Reaktion nach Gl. (21) ist auch insofern bemerkenswert, als hierbei der austretende Ligand (H) von einem nicht direkt ans Metallzentrum gebundenen Atom (C)

"übernommen" wird. Dies wird plausibel, wenn ein zwischengeschaltetes Gleichgewicht (21a) die Umlagerung einleitet.

Diese Vorstellung wird jetzt durch den Nachweis der Struktureinheit VI in 6b und 10 (s. u.) erhärtet. Den ersten Hinweis für diese Koordinationsmöglichkeit VI erhielten wir bereits an einem Eisenkomplex mit dem Liganden (Me₂PCH₂)₂PMe⁵³⁾. Der Einfluß des gespannten Bicyclus in diesem Komplex ist aber schwer abzuschätzen.

Der ebenfalls zum d⁶-System gehörende, nach Gl. (23) dargestellte Cobalt(III)-Komplex 9 weist wie 7 die Koordinationsweise V auf.

9 bildet orangerote Kristalle. Seine PMe₃-Liganden lassen sich mit dem elektronisch ähnlichen, sterisch aber anspruchsvolleren ⁵⁴ Liganden PMe₂Ph substituieren. Überraschenderweise reagiert der Komplex auf diese geringfügige sterische Belastung nicht mit einer Umorientierung der bei 9 *trans*-ständigen Methylgruppen in eine (sterisch günstigere) *cis*-Anordnung¹. (Eine solche Konfigurationsänderung läßt sich auch nicht durch eine Reaktion mit PPh₃ erzwingen⁵⁵⁾.) Der resultierende Komplex 10 behält die *trans*-Anordnung bei, jedoch koordiniert der Diphosphinomethanid-Ligand jetzt nach Typ VI als (sterisch günstiger) Dreiringchelatligand. Offensichtlich sind die Koordinationstypen V und VI nur durch geringe sterische Änderungen ineinander überführbar, was neue komplexchemische Aspekte für vergleichbare "Heteroallyl"-Liganden aufzeigt. Gleichzeitig wird damit demonstriert, daß der ambidente Charakter von Phosphinomethaniden gegenüber Elektrophilen sich nicht auf Hauptgruppenverbindungen⁵⁶⁾ beschränkt.

Spektroskopische Untersuchungen

Massenspektren der kovalenten Komplexe $1a^{2}$, 1b, 3^{5} , 4, 5, 6b, 7, 9 und 10 belegen durch das jeweilige Auftreten des Molekülpeaks deren gemeinsames monomeres Strukturprinzip. Die dabei beobachteten Fragmentierungsschemata entsprechen i. a. den Erwartungen und sollen hier nicht weiter diskutiert werden. Eine massenspektroskopische Unterscheidung der Isomeren 7 und 8 war dabei aber nicht möglich.

Infrarotspektren wurden von allen beschriebenen Komplexen vermessen. Zur Strukturzuordnung wichtige Banden sind im exp. Teil aufgeführt. Die $v(C \equiv O)$ -Valenz-

schwingung bei **1b** (1891 cm⁻¹) ist in guter Übereinstimmung mit der von L₃(CO)CoCH₃ (1895 cm⁻¹)⁴⁴⁾, ebenso die v(FeH)-Bande von 7 (1845 cm⁻¹) mit der von 3 (1822 cm⁻¹)^{4,5)}. Die FeCH₃-Funktion in 4 wird durch die δ_s FeCH₃-Schwingung bei 1160 cm⁻¹ ausgewiesen. Die entsprechende δ_s CoCH₃-Bande der Dimethylcobalt-Komplexe 5, 9 und 10 tritt wie bei allen derartigen *trans*-Komplexen¹⁾ einfach auf.

Schließlich lassen sich bei allen Dreiringkomplexen mit Ausnahme von 10 zwei Banden bei ≈ 900 und ≈ 420 cm⁻¹ aussondern, die für diese Dreiringeinheit M-C-P typisch sind (bei 10 sind diese durch intensitätsstärkere Banden des Me₂PPh-Liganden verdeckt). Der Me₂PCHPMe₂^{\odot}-Ligand in den Komplexen des Typs V macht sich insbesondere durch eine mittelstarke δ CH-Bande bei 1085 (6b) bzw. 1094 cm⁻¹ (9) bemerkbar.

	δPCH ₃ (L) [N ^{d)}]	¹ Η δPCH ₃ (Ring) [² J(PH)]	δCH ₂ /CH (Ring) [² J(PH)/ ³ J(PH)]	δP(L)	³¹ Ρ{ ¹ H} δP(Ring)	²J(PP)
1 a ^{a,b)}	+ 1.16 ^{d)} [4.5]	+ 1.31 d [9.6]	-0.54 dq [1.8/9.2]	+ 10.68 d	- 37.49 q	15.3
1 b ^{a, b)}	+ 1.15 ^d) [5.7]	+ 1.29 d [11.1]	-0.08 dt [1.1/10.5]	+ 13.45 d	- 30.58 t	21.4
2 ^{b,c)}	+ 1.76 ^{d)} [4.5]	+ 2.03 d [13.3]	+1.06 q [$\approx 0/8.5$]	- 9.08 d	-27.14 q	42.7
6 b ^{a, b, e)}	+ 1.13 ^{d)} [4.2]	_ f)	-0.80 dquin [0.4/8.4 ^{g)}]	+ 2.26 s (br) ^{h)}	– 29.06 s (br) ^{h)}	_ h)

Tab. 1. ¹H- und ³¹P{¹H}-NMR-Spektren der pentakoordinierten Komplexe 1a, b, 2, 6b

^{a)} [D₈]Toluol, ¹H: Raumtemp., ³¹P: -80 °C. -b H₃PO₄ bzw. TMS ext., J bzw. N^{d)} in Hz. -c CD₂Cl₂, ¹H: -50 °C, ³¹P: -70 °C. -d Symmetrisches Multiplett der Spinsysteme X₉A(A'X'₉)₂ bzw. X₉AA'X'₉ mit N = Abstand der äußeren Linien. -e PMe₂ "frei": ¹H: -1, ³¹P: -41.37 dq = 18.3/24.4 Hz. -1 Sichere Zuordnung nicht möglich wegen teilweiser Signalüberlagerung. -8 Enthält Kopplung mit PMe₂ "frei" ²J(PH) = 8.4 Hz. -b Erst bei -90 °C beginnende Aufspaltung, jedoch keine volle Auflösung.

Die ¹H- und ³¹P-NMR-Spektren der pentakoordinierten Komplexe **1a, b, 2** und **6b** (Tab. 1) belegen ein dynamisches Verhalten (Pseudorotation) bis -90° C in Lösung (die "offenen" Vergleichskomplexe **A** und **B** sind dagegen bei -60° C starr). Beim Nickelkomplex wird zusätzlich beim Erwärmen über -20° C eine Liganddissoziation wirksam. Diese löscht alle über das Metallatom vermittelten Kopplungen, so daß (verbreiterte) Singuletts (mit Ausnahme der ¹H-Dublettresonanz für PCH₃ (M - C - P)) resultieren. Dabei stimmen die Spektren von **2a** und **b** überein, das Chlorid-Ion nimmt an diesem Prozeß offensichtlich nicht teil.

Wegen des Quadrupolmoments des Cobaltkerns muß zur Erzielung scharfer ³¹P-Resonanzlinien bei **1a** und **b** auf -80°C gekühlt werden. Diese Temperatur reicht bei **6b** offensichtlich noch nicht aus: nur die nicht direkt an das Cobalt gebundene "freie" PMe₂-Gruppe gibt scharfe Linien (zwischen -100 und +60°C keine signifikante Änderung), wobei das auftretende Multiplett der erwarteten Kopplungsbeziehung entspricht.

Nur stark verbreiterte Linien infolge paramagnetischer Verunreinigungen – wie bei einigen ähnlichen Phosphaneisenkomplexen¹⁾ – waren dem ¹H-NMR-Spektrum von 4

und 7 zu entnehmen. Davon unberührt ist allerdings die Fe – ¹H-Resonanz von 7, deren d · quin-Multiplettstruktur (s. exp. Teil) die Ligandenanordnung direkt widerspiegelt (wie bei vergleichbaren Hydridoeisen-Komplexen³⁷⁾ sind alle *cis-J*(PFeH)-Kopplungen annähernd gleich groß).

3		$\begin{array}{c} \mathbf{X} = \mathbf{H} \\ 3 \end{array}$	$X = CH_3$		$\begin{array}{c} \mathbf{X} \ = \ \mathbf{H} \\ 3 \end{array}$	$X = CH_3$
PD PA PC CH2 PB PC CH2	δΡ _Α δΡ _Β δΡ _C δΡ _D	- 19.0 + 33.4 + 20.0 + 27.6	- 33.3 + 32.6 + 23.1 + 24.5	$^{2}JP_{A}P_{B}$ $^{2}JP_{A}P_{C}$ $^{2}JP_{A}P_{D}$ $^{2}JP_{B}P_{C}$ $^{2}JP_{B}P_{D}$ $^{2}JP_{C}P_{D}$	≈ 36.5 ≈ 32.0 ≈ 38.6 ≈ 36.5 ≈ 11.0 ≈ 38.0	≈ 70.2 ≈ 30.5 ≈ 42.7 ≈ 36.6 ≈ 6.1 ≈ 30.5

Tab. 2. ³¹P-NMR-Daten von 3 und 4 (0 °C, $[D_8]$ Toluol, δ in ppm, J in Hz)

Das ${}^{31}P{}^{1}H-NMR-Spektrum von 4$ (ABCD-Spinsystem) ist wie das von 3 nach 1. Ordnung interpretierbar (Tab. 2) und belegt das gemeinsame Strukturprinzip bei 3/4.

Bei 7 entsprechen die drei symmetrischen Multiplettsignale (2:2:1, s. exp. Teil) den Erwartungen, sie waren für eine genauere Auswertung aber nicht genügend aufzulösen.

	¹ Η δPCH ₃ [² J(PH)/N ^{b)}]	δCoCH3 [³ J(PH)]	δΡ _{Α(Α')}	δΡ _{Β(Β΄)}	³¹ Ρ δΡ _C	δΡ _D	² J(PP)
5 c) 10 d)	$ \begin{array}{l} A + 0.95 \ d \ [5.6] \\ B + 0.92 \ d \ [7.0] \\ C + 0.89 \ d \ [6.9] \\ A + 1.51/+1.45^{\circ} \\ B + 0.86/+0.80^{\circ} \\ C + 0.54/+0.45^{\circ} \end{array} $	- 1.10 dt [8.9/7.8] - 0.35 q [8.0]	- 24.80 - 1.88	+ 30.53 + 34.38	+ 26.05 + 32.33	- - 53.86 ^{g)}	AB: 208 AC: 43 BC: <6 AB: 205 AC: 46 BC: <6
9 f)	$D + 1.13/ + 0.99^{e}$ $A/A': + 1.29 , m^{(4)}b)$ [10.4] $B/B': + 0.99 , m^{(4)}b)$ [7.4]	-0.80 q [7.6] -0.18 tt [6.8/8.3]	- 17.8	+ 20.3	-	-	AA': 118 BB': 56 AB = A'B': 72 AB' = A'B: 220

Tab. 3. ¹H- und ³¹P{¹H}-NMR-Daten von 5, 9 und 10^{a}

^{a)} [D₈]Toluol; J bzw. N^{b)} in Hz; ¹H: Raumtemp., TMS ext.; ³¹P: -80 °C, H₃PO₄ ext. - ^{b)} Symmetrische Multipletts der Spinsysteme höherer Ordnung mit N = Abstand der intensivsten (äußeren) Linien. - ^{c)} δ CH₂ = -0.28 dd [²J(P_AH) = 4.9/cis ³J(P_BH) = 7.1/trans ³J(P_CH) ≈ 0]. - ^{d)} δ CH nicht sicher zuzuordnen. - ^{e)} Signale teilweise überlagert, {³¹P}: je zwei Singuletts. - ^{f)} J(P_{A/B/C}P_D) ≈ 0.

Das ${}^{31}P{}^{1}H{}-NMR-Spektrum (AA'BB' - s. Abb. 1, oben) von 9 und das im Bereich$ $von -70 bis +80 °C im wesentlichen unveränderte <math>{}^{1}H-NMR-Spektrum belegen die$ starre, symmetrische Koordinationsweise V, ein Hinweis auf ein Gleichgewicht mit einer Koordination gemäß VI ergibt sich daraus ebensowenig wie im umgekehrten Sinnaus den Spektren von 10. Dessen Strukturverwandtschaft mit 5 ergibt sich insbesondere

Abb. 1. ${}^{31}P{}^{1}H-NMR-Spektrum ([D_8]Toluol; -90 °C; 36.43 MHz) von 9 (oben) und 10 (unten)$

aus dem ³¹P{¹H}-NMR-Spektrum (Abb. 1, unten), wobei auffällt, daß zum – durch seine Hochfeldverschiebung als "frei" ausgewiesenen – P_D-Kern keine Kopplung gemessen wird (auch bei **6b** sind die entsprechenden Kopplungen klein), und auch ²J(P_BP_C) macht sich nur durch eine Signalverbreiterung bemerkbar. Der auffälligste Unterschied betrifft δP_A : hier ist offensichtlich der sterische Einfluß wirksam, wie er auch schon bei den lithiierten Phosphanen LiCH₂PMe₂/LiCH(PMe₂)₂⁵⁶⁾ auftritt. Die ¹H-NMR-Spektren von **5** und **10** weisen dagegen, bedingt durch die Symmetrieerniedrigung bei **10**, größere Unterschiede auf: alle Methylgruppen sind zueinander anisochron, d. h. bei ³¹P-Entkopplung sind P_ACH₃, P_BCH₃, P_CCH₃, P_DCH₃ und CoCH₃ durch jeweils *zwei* Resonanzlinien repräsentiert. Ein solches Bild wäre allerdings auch bei einer (alternativ denkbaren, s. o.) *cis*-Konfiguration **10**' zu erwarten, so daß eine sichere Zuordnung nur über das ³¹P-NMR-Spektrum möglich ist.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danke ich für die finanzielle Förderung dieser Arbeit. Ebenso danke ich Herrn Dr. F. R. Kreißl für die Aufnahme der Massenspektren und Frau B. Stöckl für ihre engagierte Mitarbeit bei den Laborarbeiten und der Manuskripterstellung.

Experimenteller Teil

Alle Experimente wurden zum Ausschluß von Luft und Feuchtigkeit unter trockenem Stickstoff ausgeführt. Geräte und Lösungsmittel waren entsprechend vorbehandelt. – Geräte: IR-Spektrometer Perkin-Elmer 577. – NMR-Spektrometer Jeol C60HL, Jeol FX60 und Bruker HX90. – Massenspektrometer Varian 311A (70 eV). – Die Mikroanalysen wurden von *M. Barth* und *U. Graf* durchgeführt.

Carbonyl[(dimethylphosphino)methyl-P,C]bis(trimethylphosphan)cobalt (1b): 0.80 g $(Me_3P)_3(CO)CoCl^{57}$ (2.28 mmol) und 0.20 g $LiCH_2PMe_2$ (2.44 mmol) werden durch Dazukondensieren von 20 ml Ether bei -78 °C gelöst. Unter Rühren läßt man auf Raumtemp. kommen und entfernt das Lösungsmittel i. Vak. Der Rückstand wird mit 30 ml Pentan gelöst, die Lösung filtriert und das Pentan i. Vak. entfernt. Es bleibt ein nur zögernd kristallisierendes, rotbraunes Öl zurück (0.63 g, 90%), das durch Sublimation (90 °C/10⁻² Torr) unter starker Zersetzung gereinigt werden kann. – MS: $m/e = 314 (M^+)$. – IR (Nujol): 1891 (CO); 892, 415 cm⁻¹ (CoCP-Dreiring).

C₁₀H₂₆CoOP₃ (314.2) Ber. C 38.23 H 8.34 Gef. C 37.86 H 8.25

1b wird auch erhalten, wenn $1a^{2,19}$ in Pentan 10 min mit CO zur Reaktion gebracht wird (Normalbedingungen).

Längere Reaktionszeiten (1 d) ergeben einen braunroten Feststoff (1c), der auch erhalten wird, wenn $(Me_3P)_2(CO)_2CoCl^{57}$ wie oben beschrieben mit LiCH₂PMe₂ umgesetzt wird. Für eine zweifelsfreie Identifizierung ist er nicht rein genug zu erhalten. – IR (Nujol): 1930, 1903, 1710 cm⁻¹ (CO).

[(Dimethylphosphino)methyl-P,C]tris(trimethylphosphan)nickel-chlorid (2a): 1.2 g (Me₃P)₂-NiCl₂ (4.26 mmol) und 350 mg LiCH₂PMe₂ (4.27 mmol) werden bei -80° C in 25 ml THF mit 0.5 ml PMe₃ unter Rühren gelöst. Man läßt auf 0°C erwärmen, ersetzt das THF durch 30 ml CH₂Cl₂/Ether (1:1), filtriert und kristallisiert durch Kühlen: orange Nadeln (580 mg, 34%), Schmp. 120 – 130°C (Zers.). – IR (Nujol): 902, 400 cm⁻¹ (NiCP-Dreiring).

C₁₂H₃₅ClNiP₄ (397.5) Ber. C 36.26 H 8.88 Gef. C 36.06 H 8.74

Eine analoge Reaktion mit 700 mg LiCH₂PMe₂ ergibt nach einer zur Darstellung von 1b analogen Arbeitsweise einen hellgelben Feststoff, der sich als $(Me_3P)_4Ni$ identifizieren läßt (IR, NMR).

 $[(Dimethylphosphino)methyl-P,C]tris(trimethylphosphan)nickel-hexafluorophosphat (2b): 1.2 g (Me_3P)_2NiCl_2 (4.26 mmol), 350 mg LiCH_2PMe_2 (4.27 mmol) und 730 mg NaPF_6 (4.35 mmol) werden bei - 80 °C in 30 ml THF mit 0.5 ml PMe_3 unter Rühren gelöst. Man läßt auf 0 °C erwärmen, filtriert und engt langsam ein, indem die Lösung auf ca. 50 °C erwärmt und das Lösungsmittelkondensat kontinuierlich entfernt wird. Man erhält orange würfelförmige Kristalle (1.5 g, 69%), Schmp. 175 - 180 °C (Zers.). - IR (Nujol): 903, 400 cm⁻¹ (NiCP-Dreiring).$

C₁₂H₃₅F₆NiP₅ (570.0) Ber. C 28.43 H 6.96 Ni 11.60 Gef. C 28.63 H 6.95 Ni 11.54

Reaktion von HCl/NaI mit (Me₃P)₄Fe nach Gl. (8): Zu 1.0 g (Me₃P)₄Fe (2.78 mmol) und 420 mg NaI (2.80 mmol) in 30 ml Ether werden unter Rühren bei -20 °C langsam 14 ml 0.2 N HCl/Ether getropft. Man läßt auf -10 °C erwärmen, filtriert und kristallisiert durch Kühlen: (Me₃P)₄Fe(H)I wird in Form dunkelroter Kristalle (870 mg, 64%) erhalten.

Entsprechend wird $[(CD_3)_3P]_4Fe(D)I$ aus $[(CD_3)_3P]_4Fe^4$, NaI und DCl/Et₂O (aus POCl₃ und D₂O) erhalten. – IR (Nujol): 1291 cm⁻¹ v(Fe – D).

Reaktion von $(Me_3P)_4Fe(H)I$ mit LiCH₂PMe₂ nach Gl. (9): 0.50 g $(Me_3P)_4Fe(H)I$ (1.02 mmol) und 84 mg LiCH₂PMe₂ (1.02 mmol) werden zusammen bei - 80°C in 15 ml Ether unter Rühren

gelöst. Man läßt auf +10 °C kommen, dann wird der Ether i. Vak. entfernt. Behandeln des Rückstands mit Pentan (20 ml), Filtrieren und Abziehen des Lösungsmittels liefert 320 mg 3 (87%).

Eine entsprechende Reaktion mit $[(CD_3)_3P]_4$ Fe(D)I liefert ein analoges Produkt, das IR-spektroskopisch (Nujol) untersucht wurde (s. Text).

[(Dimethylphosphino)methyl-P,C]methyltris(trimethylphosphan)eisen (4)

a) Zu 0.70 g (Me_3P)₄FeMeBr⁴⁰) (1.54 mmol) und 130 mg LiCH₂PMe₂ (1.59 mmol) werden bei – 80 °C 30 ml Ether kondensiert. Man läßt unter Rühren auf 0 °C kommen, entfernt das Lösungsmittel i. Vak. und behandelt den Rückstand mit 20 ml Pentan. Filtrieren und Kühlen liefert orange Kristalle (430 mg, 75%).

b) 1.1 g $(Me_3P)_2FeCl_2$ (3.95 mmol) und 500 mg Magnesium werden in 30 ml THF, dem 1 ml PMe_3 zugesetzt wurde, bei 0°C gerührt, bis eine Gelbfärbung der Lösung die Bildung von "(Me_3P)_4Fe" anzeigt. Dann wird auf -20°C gekühlt und mit 0.5 ml Methyliodid versetzt, anschließend wird 1 d bei Raumtemp. gerührt. Nach Abziehen des THF wird mit 60 ml Pentan aufgenommen und filtriert. Aus dem Filtrat kristallisieren durch Kühlen bzw. Einengen nacheinander grüne [(Me_3P)_2FeI_2], rote [(Me_3P)_3(Me_2PEt)Fe(H)I] und violettbraune [(Me_3P)_4Fe(Me)I] Kristalle. Weiteres Einengen und Kühlen auf -78 °C liefert schließlich orange Kristalle (340 mg, 23%), Zers. > 85 °C. – MS: m/e = 374 (M⁺). – IR (Nujol): 1160 (δ_s FeCH₃); 894, 440 cm⁻¹ (FeCP-Dreiring).

 $C_{14}H_{38}FeP_4$ (374.2) Ber. C 41.73 H 10.24 Fe 14.92 Gef. C 41.56 H 10.14 Fe 14.59

[(Dimethylphosphino)methyl-P, C]dimethylbis(trimethylphosphan)cobalt (5): Eine Lösung von 800 mg (Me₃P)₃CoMe₂Br⁴¹⁾ (2.02 mmol) und 170 mg LiCH₂PMe₂ (2.07 mmol) in 40 ml THF/ -40 °C wird 2 h gerührt. Nach Erwärmen wird das Lösungsmittel i. Vak. entfernt. Aus dem Rückstand läßt sich mit Pentan (30 ml) das Produkt herauslösen, das nach Filtrieren und Einengen auf 15 ml durch Kühlen auf -78 °C in Form orangegelber Kristalle erhalten wird: 550 mg (86%), Schmp. 70-75 °C. -MS: $m/e = 316 (M^+)$. - IR (Nujol): 1160 (δ_s CoCH₃); 894, 427 (CoCP-Dreiring); 478 cm⁻¹ (CoC).

C₁₁H₃₂CoP₃ (316.2) Ber. C 41.78 H 10.20 Co 18.64 Gef. C 41.54 H 10.30 Co 18.50

Reaktion von **2b** *bzw.* **5** mit CO: Die Komplexe werden unter CO-Atmosphäre in THF (2b) bzw. Pentan (5) gelöst (1 atm, 20 °C) und 3 h stehengelassen. Abziehen des Lösungsmittels i. Vak. und IR-spektroskopische Untersuchung des Rückstands liefert keinen Hinweis auf eine Reaktion. Nach 3 d ist jedoch bei 2b eine merkliche Reaktion zu erkennen⁵⁰⁾.

[Bis(dimethylphosphino)methyl-P,C]tris(trimethylphosphan)cobalt (**6b**): Eine Lösung von 1.0 g $(Me_3P)_3$ CoCl (3.10 mmol) und 440 mg LiCH(PMe₂)₂ (3.10 mmol) in 40 ml THF/-40 °C wird 3 h gerührt. Nach Erwärmen wird das Lösungsmittel i. Vak. entfernt. Aus dem Rückstand läßt sich **6b** mit Pentan herauslösen. Nach Filtrieren wird das Pentan i. Vak. abgezogen: brauner Feststoff (1.2 g, 92%), Schmp. 65-71 °C (Zers.). - MS: m/e = 422 (M⁺). - IR (Nujol): 893, 418 (CoCP-Dreiring) cm⁻¹.

C₁₄H₄₀CoP₅ (422.3) Ber. C 39.82 H 9.55 Gef. C 39.53 H 9.31

[Bis(dimethylphosphino)methyl-P,P]hydridotris(trimethylphosphan)eisen (7): 800 mg (Me₃P)₄-Fe(H)Br³⁷) (1.81 mmol) und 260 mg LiCH(PMe₂)₂ (1.83 mmol) werden bei -30° C in Ether gerührt, bis eine gelbe Lösung entstanden ist. Der Ether wird bei dieser Temp. i. Vak. entfernt und der Rückstand ebenfalls bei -30° C in Pentan gelöst, die Lösung schnell filtriert und eingeengt. Weiteres Kühlen auf -78° C liefert orangegelbe Kristalle, die i. Vak. getrocknet werden (440 mg, 58%), Zers. $> 65^{\circ}$ C. - MS: m/e = 420 (M⁺). - IR (Nujol): 1845 (FeH) cm⁻¹. - ¹H-NMR (C₆D₆, 20°C, TMS ext.): δ FeH $= -12.4 \text{ d} \cdot \text{quin}(t_{trans}J(PFeH) = 26, cisJ(P_4FeH) = 59 \text{ Hz}. -$ ${}^{31}P_{1}^{1}H$ -NMR (C₆D₆, -80°C, H₃PO₄ ext.): $\delta = +32.4$ m (2 PMe₃), + 16.7 m (1 PMe₃), -12.0 m ((Me₂P)₂CH^{\ominus}).

C14H41FeP5 (420.2) Ber. C 40.02 H 9.84 Gef. C 39.79 H 9.82

Längeres Stehenlassen der Lösungen von 7 in Toluol oder Benzol bzw. der IR-Nujolverreibungen bei Raumtemp. führt zu einer Farbvertiefung nach Rot und dem Verschwinden der 7 zuzuordnenden Signale zugunsten derer von 8, die mit denen einer authentischen Probe⁵²) übereinstimmen.

[Bis(dimethylphosphino)methyl-P,P]dimethylbis(trimethylphosphan)cobalt (9): Auf 800 mg $(Me_3P)_3CoMe_2Br^{41}$ (2.01 mmol) und 300 mg LiCH(PMe_2)₂ (2.11 mmol) werden bei - 78 °C 20 ml Ether kondensiert. Unter Rühren läßt man auf Raumtemp. kommen, ersetzt den Ether durch Pentan, filtriert die erhaltene Lösung und engt ein. Durch Kühlen werden 545 mg (72%) orangerote Kristalle erhalten, Schmp. 95 - 97 °C (Zers.). - MS: $m/e = 376 (M^+)$. - IR (Nujol): 1168 (δ_sCoCH_3) cm⁻¹. - ¹³C[¹H]-NMR ([D₈]Toluol, -60 °C, 15 MHz, TMS int.): $\delta CH = 24.41 t (4.8 Hz), \delta P_{A/B}CH_3 = 119.22 m (nicht aufzulösen durch Signalüberlagerung), <math>\delta CoCH_3 = -10.04$ quin (15.6 Hz).

C13H37CoP4 (376.3) Ber. C 41.50 H 9.91 Co 15.66 Gef. C 41.17 H 9.77 Co 15.47

[Bis(dimethylphosphino)methyl-P,C]bis(dimethylphonylphosphan)dimethylcobalt (10): 500 mg 9 (1.33 mmol) in 30 ml Pentan werden mit 370 mg P(CH₃)₂(C₆H₃) (2.68 mmol) versetzt. Man läßt 3 d bei Raumtemp. stehen und filtriert. Nach Einengen und Kühlen auf -78 °C werden orangebraune Nadeln erhalten (400 mg, 60%), Schmp. 95 – 99 °C (Zers.). – MS: m/e = 500 (M⁺).

C₂₃H₄₁CoP₄ (500.4) Ber. C 55.21 H 8.26 Gef. C 54.82 H 8.52

- H. H. Karsch, H.-F. Klein, C. G. Kreiter und H. Schmidbaur, Chem. Ber. 107, 3692 (1974).
 N. Bresciani, M. Calligans, P. Delise, G. Nardin und L. Randaccio, J. Am. Chem. Soc. 96, 5642 (1974); S. Bresadola, B. Longato und F. Morandini, J. Organomet. Chem. 128, C 5 (1977); N. Bresciani-Pahor, Acta Crystallogr., Sect. B 33, 3214 (1977); S. Bresadola, N. Bres-
- ciani-Pahor und B. Longato, J. Organomet. Chem. 179, 73 (1979).
 ⁴⁾ H. H. Karsch, H.-F. Klein und H. Schmidbaur, Chem. Ber. 110, 2200 (1977); H. H. Karsch, H.-F. Klein und H. Schmidbaur, Angew. Chem. 87, 630 (1975); Angew. Chem., Int. Ed. Engl. 14, 637 (1975).
- ⁵⁾ J. W. Rathke und E. L. Muetterties, J. Am. Chem. Soc. 97, 3272 (1975); T. V. Harris, J. W. Rathke und E. L. Muetterties, ebenda 100, 6966 (1978).
- ⁶⁾ S. D. Ittel, C. A. Tolman, A. D. English und J. P. Jesson, J. Am. Chem. Soc. 98, 6073 (1976); C. A. Tolman, S. D. Ittel, A. D. English und J. P. Jesson, ebenda 100, 4080 (1978).
- ⁷⁾ H. Schmidbaur und G. Blaschke, Z. Naturforsch., Teil B 35, 584 (1980).
- ⁸⁾ H. Werner und R. Werner, J. Organomet. Chem. 209, C 60 (1981); H. Werner und J. Gotzig, Organometallics 2, 547 (1983).
- ⁹⁾ F. G. N. Cloke, K. P. Cox, M. L. H. Green, J. Bashkin und K. Prout, J. Chem. Soc., Chem. Commun. 1982, 393.
- ¹⁰⁾ K. W. Chin, C. G. Howard, H. S. Rzepa, R. N. Sheppard und G. Wilkinson, Polyhedron 1, 441 (1982).
- ¹¹⁾ F. A. Cotton, B. A. Frenz und D. L. Hunter, J. Chem. Soc., Chem. Commun. 1974, 755, und dort zit. Lit.
- ¹²⁾ A. J. Deeming und M. Underhill, J. Chem. Soc., Dalton Trans. 1973, 2727; A. J. Deeming, J. Organomet. Chem. 128, 63 (1977).
- 13) H.-F. Klein, J. Wenninger und U. Schubert, Z. Naturforsch., Teil B 34, 1391 (1979).
- 14) G. Lavigne und J.-J. Bonnet, Inorg. Chem. 20, 2713 (1981).
- ¹⁵⁾ N. E. Schore und H. Hope, J. Am. Chem. Soc. 102, 4251 (1980); R. Choukroun und D. Gervais, J. Chem. Soc., Chem. Commun. 1982, 1300.
- ¹⁶⁾ Th. Kauffmann und R. Joußen, Chem. Ber. 110, 3930 (1970).
- ¹⁷⁾ H. H. Karsch, noch unveröffentlicht.
- ¹⁸⁾ P. Hofmann, P. Stauffert und N. E. Schore, Chem. Ber. 115, 2153 (1982).
- ¹⁹⁾ H. H. Karsch und H. Schmidbaur, Z. Naturforsch., Teil B 32, 762 (1977).

¹⁾ VI. Mitteil.: H. H. Karsch, Chem. Ber. 116, 1656 (1983).

- ²⁰⁾ S. Al-Jibori, C. Crocker, W. S. McDonald und B. L. Shaw, J. Chem. Soc., Dalton Trans. 1981, 1572.
- ²¹⁾ E. Lindner, G. Funk und S. Hoehne, Chem. Ber. 114, 2465 (1981); E. Lindner, F. Bonachir und W. Hiller, Z. Naturforsch., Teil B 37, 1146 (1982); E. Lindner, K. A. Starz, H. J. Eberle und W. Hiller, Chem. Ber. 116, 1209 (1983).
- 22) R. Choukroun und D. Gervais, J. Chem. Soc., Chem. Commun. 1982, 1300.
- ²³⁾ A. Camus, N. Marsich, G. Nardin und L. Randaccio, J. Organomet. Chem. 60, C 39 (1973).
- ²⁴⁾ J. W. A. van der Velden, F. A. Vollenbroek, J. J. Bour, P. T. Beurskens, J. M. M. Smits und W. P. Bosman, Rec. Trav. Chim. Pays-Bas 100, 148 (1981).
- ²⁵⁾ K. Issleib und H.-P. Abicht, J. Prakt. Chem. **312**, 456 (1970); K. Issleib, H.-P. Abicht und H. Winkelmann, Z. Anorg. Allg. Chem. **388**, 89 (1972).
- ²⁶ H. Schmidbaur und J. R. Mandl, Angew. Chem. 89, 679 (1977); Angew. Chem., Int. Ed. Engl. 16, 640 (1977); H. Schmidbaur, J. R. Mandl, J.-M. Bassett, G. Blaschke und B. Zimmer-Gasser, Chem. Ber. 114, 433 (1981).
- 27) C. E. Briant, K. P. Hall und D. M. P. Mingos, J. Organomet. Chem. 229, C 5 (1982).
- ^e ²⁸) G. M. Dawkins, M. Green, J. C. Jeffery und F. G. A. Stone, J. Chem. Soc., Chem. Commun. 1980, 1120; G. M. Dawkins, M. Green, J. C. Jeffery, C. Sambale und F. G. A. Stone, J. Chem. Soc., Dalton Trans. 1983, 499.
 - 29) J. Browning, G. W. Bushnell und K. R. Dixon, J. Organomet. Chem. 198, C 11 (1980).
- ³⁰⁾ S. Al-Jibori und B. L. Shaw, J. Chem. Soc., Chem. Commun. 1982, 826.
- ³¹⁾ J.-M. Bassett, J. R. Mandl und H. Schmidbaur, Chem. Ber. 113, 1145 (1980).
- ³²⁾ H. H. Karsch, Angew. Chem. 94, 322 (1982); Angew. Chem., Int. Ed. Engl. 21, 311 (1982).
- 33) H. H. Karsch, Angew. Chem. 94, 923 (1982); Angew. Chem., Int. Ed. Engl. 21, 921 (1982). ³⁴⁾ Eine vergleichbare reduktive Eliminierung tritt z. B. bei $L_2Ni(CH_3)_2^{35}$ und $L'_2Ni(CH_2SiMe_3)_2$ (L = PMe₃, L' = PMe₃, Pyridin, etc.)³⁶⁾ ebenfalls auf, z. T. aber erst bei erhöhter Temperatur bzw. Ligandüberschuß.
- 35) H.-F. Klein und H. H. Karsch, Chem. Ber. 105, 2628 (1972).
- ³⁶⁾ E. Carmona, F. Gonzales, M. L. Poveda, J. L. Atwood und R. D. Rogers, J. Chem. Soc., Dalton Trans. 1981, 769; C. S. Chin und M. D. Curtis, Taehan Hwakakhoe Chi 25, 311 (1981) [Chem. Abstr. 96, 85739c (1982)].
- 37) H. H. Karsch, Chem. Ber. 110, 2222 (1977).
- ³⁸⁾ Die Einleitung der reduktiven Eliminierung durch Addition eines Phosphanliganden gemäß L₃(H)FeCH₂PMe₂ $\xrightarrow{+ L}$ L₄(H)FeCH₂PMe₂ $\xrightarrow{- CH_3PMe_2}$ → L₄Fe konnte nach Lit.⁴⁾ nicht sicher ausgeschlossen werden.
- ³⁹⁾ Ebenso liefert die thermische Zersetzung von L_4 FeMe₂ nicht L_4 Fe⁴⁰⁾.
- 40) H. H. Karsch, Chem. Ber. 110, 2699 (1977).
- 41) H.-F. Klein und H. H. Karsch, Chem. Ber. 108, 956 (1975).
- 42) H. H. Karsch, Chem. Ber. 110, 2213 (1977).
- 43) H. H. Karsch, Chem. Ber. 111, 1650 (1978).
- 44) H.-F. Klein und H. H. Karsch, Chem. Ber. 108, 944 (1975).
- $^{45)}$ Der zu **1b** analoge Komplex L₃(CO)CoCH₃ wurde aber als Produkt einer zu Gl. (2) analogen Reaktion beschrieben 44).
- 46) H.-F. Klein, H. H. Karsch und W. Buchner, Chem. Ber. 107, 537 (1974); H.-F. Klein und H. H. Karsch, ebenda 109, 2515 (1976).
- ⁴⁷) Kovalente⁴⁸) sowie kationische tetrakoordinierte⁴⁹) Alkylnickelkomplexe reagieren bereitwillig mit CO.
- 48) H.-F. Klein und H. H. Karsch, Chem. Ber. 109, 2524 (1976); T. Yamamoto, T. Kohara und A. Yamamoto, Bull. Chem. Soc. Jpn. 54, 2161 (1981); E. Carmona, F. Gonzales, M. L. Poveda, J. L. Atwood und R. D. Rogers, J. Chem. Soc., Dalton Trans. 1980, 2108.
- 49) P. Stoppioni, P. Dapporto und L. Sacconi, Inorg. Chem. 17, 718 (1978).
- ⁵⁰⁾ **2b** ergibt bei längeren Reaktionszeiten mit CO (THF, 20°C, 3 d, 1 atm) u. a. ein noch nicht identifiziertes, CO-freies Produkt, das aus THF in blauen Nadeln kristallisiert.
- ⁵¹⁾ H. H. Karsch, Chem. Ber. 115, 1956 (1982).
- ⁵²⁾ H. H. Karsch, Chem. Ber. 116, 1643 (1983).
- ⁵³⁾ H. H. Karsch und D. Neugebauer, Angew. Chem. 94, 322 (1982); Angew. Chem., Int. Ed. Engl. 21, 312 (1982).
- 54) C. A. Tolman, Chem. Rev. 77, 313 (1977).
- ⁵⁵⁾ Bei 60 °C in Toluol nach 3 d keine Reaktion von 9 mit PPh₃.
- ⁵⁶ H. H. Karsch, Z. Naturforsch., Teil B 34, 1171, 1178 (1979), dort weitere Literatur.
 ⁵⁷ H.-F. Klein und H. H. Karsch, Inorg. Chem. 14, 473 (1975).

[148/83]